Iron oxide nanocomposite magnets produced by partial reduction of strontium hexaferrite
نویسندگان
چکیده
منابع مشابه
Cluster-Assembled Iron-Platinum Nanocomposite Permanent Magnets
Exchange-spring nanocomposite permanent magnets have received a great deal of attention for their potential for improved the energy products. Predicted results, however, has been elusive. Optimal properties rely on a uniformly fine nanostructure. Particularly, the soft magnetic phase must be below approximately 10 nm to ensure complete exchange coupling. Inert gas condensation (IGC) is an ideal...
متن کاملSynthesis of cuprous oxide nanocomposite electrodes by room-temperature chemical partial reduction.
We demonstrate a template-free synthetic approach for the preparation of a highly conductive Cu/Cu(2)O nanocomposite electrode by a chemical reduction process. Cu(2)O octahedra were prepared through chemical dehydrogenation of as-synthesized Cu(OH)(2) nanowire precursors. To provide a sufficiently electron-conducting network, the Cu(2)O particles were transformed into Cu/Cu(2)O nanocomposites b...
متن کاملEnzymatic reduction of iron oxide by fungi.
The occurrence of the iron-reducing phenomenon among some common fungi was studied. Results indicated that (i) the reduction of ferric iron to the ferrous state by fungi seems to be restricted to nitrate reductase-inducible strains such as Actinomucor repens, Alternaria tenuis, Fusarium oxysporum, and F. solani and (ii) the amount of dissolved ferrous iron may be reduced progressively by increa...
متن کاملGold and iron oxide hybrid nanocomposite materials.
This critical review provides an overview of current research activities that focused on the synthesis and application of multi-functional gold and iron oxide (Au-Fe(x)O(y)) hybrid nanoparticles and nanocomposites. An introduction of synthetic strategies that have been developed for generating Au-Fe(x)O(y) nanocomposites with different nanostructures is presented. Surface functionalisation and ...
متن کاملOne-pot synthesis and characterization of biopolymer – Iron Oxide nanocomposite
The magnetite (Fe3O4) – agar nanocomposite was prepared by co-precipitation of Fe (III) and Fe (II) ions for the first time. The obtained samples were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. FT-IR results confirm the formation of Fe3O4 nanoparticles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPJ Web of Conferences
سال: 2014
ISSN: 2100-014X
DOI: 10.1051/epjconf/20147504007